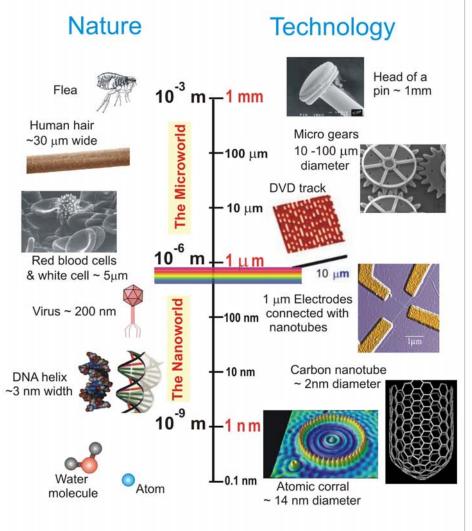
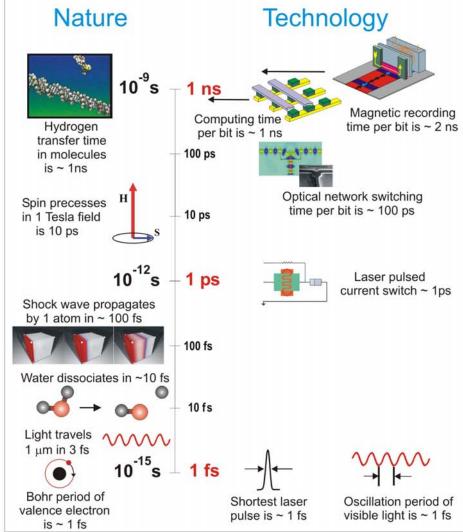


The Seeded X-ray FEL Concept: The Ultimate Source

David E. Moncton Massachusetts Institute of Technology

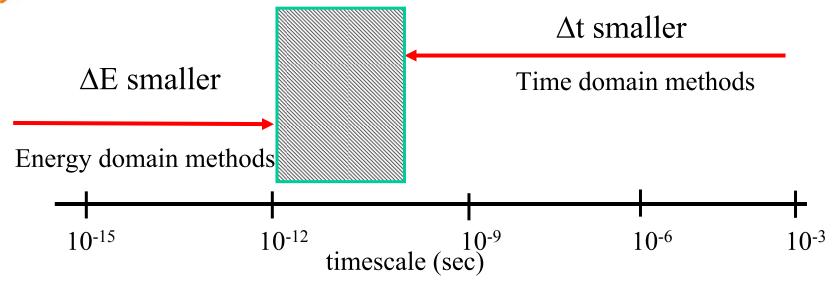
NSF Panel on Light Source Facilities Lawrence Livermore National Laboratory January 9, 2008



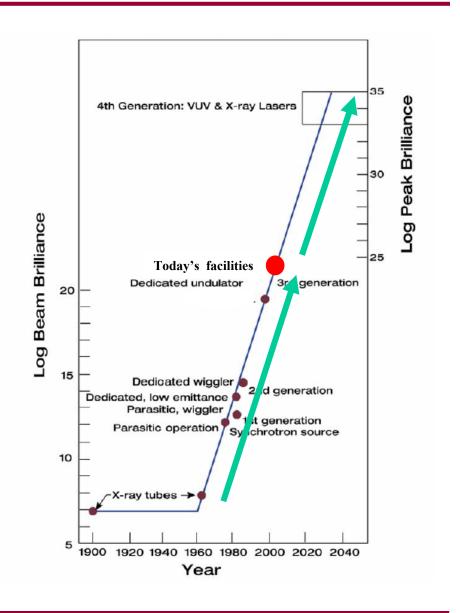

Future Light Sources

Challenge: Probe of all spatial and temporal scales and resolutions relevant to condensed matter

Spatial Scales


Temporal Scales Nature Technological

Temporal Structure of Condensed Matter


- Gap exists at 3rd gen sources in a critical region and flux is weak
- Seeded FELs close this critical gap with high power transform-limited pulses
- The beam has full longitudinal coherence and high stability
- Full longitudinal coherence would enable powerful new coherent dynamics methods
- This is a unique aspect of the seeded FELs such as we propose at the University of Wisconsin

X-ray Science Driven by Beam Brilliance

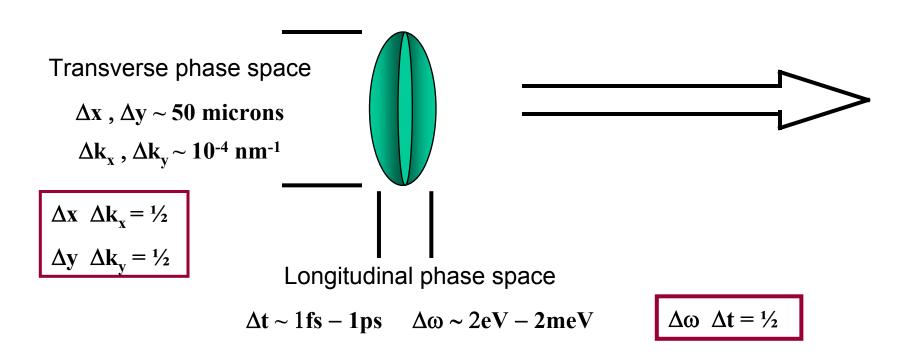
- X-ray sources have made extraordinary scientific contributions over 100 years
- Over a dozen Nobel Prizes
- The structure of virtually every material is determined by x-rays
- Medical Imaging and the CAT scan
- About three thousand protein structures per year
- Source brilliance increasing at 2x Moore's Law

Tutorial on Peak Brilliance

Peak Brilliance = # photons/ 6D phase space volume = # photons/ $\Delta x \Delta \theta_x \Delta y \Delta \theta_y \Delta t \Delta E$

- Conventional phase space units: mm² mrad² sec 0.1% bw
- Fundamental phase space units: 1 quantum mode defined by $\Delta x \ \Delta \theta_x = \Delta y \ \Delta \theta_v = \lambda/4\pi; \quad \Delta t \ \Delta E = \hbar/2$
- Conversion factor: 2.3 x $10^{24}/\lambda^3$ (A)

Example—5 x 10^{10} 12 keV photons (0.1 mJ) in a coherent pulse, then the peak brilliance is 1.2×10^{35}

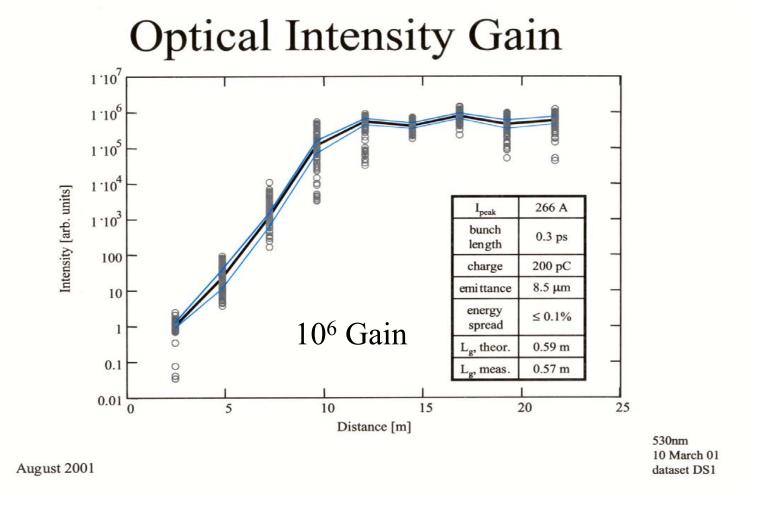

Brilliance = Peak Brilliance x duty factor $\sim 10^{28}$

• Satisfies the Uncertainty Principle in all dimensions

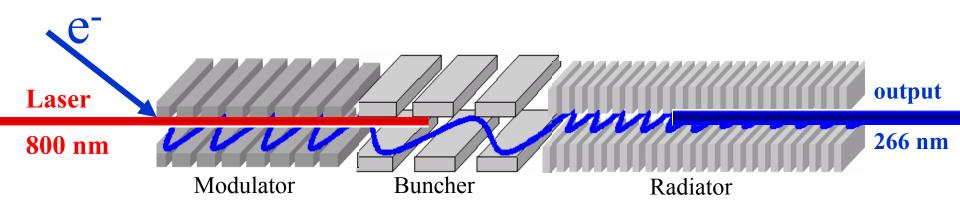
A 0.1 mJ pulse contains 5.0 x 10¹¹ 1.2 keV photons

→ Peak brilliance = 1.2 x 10³²

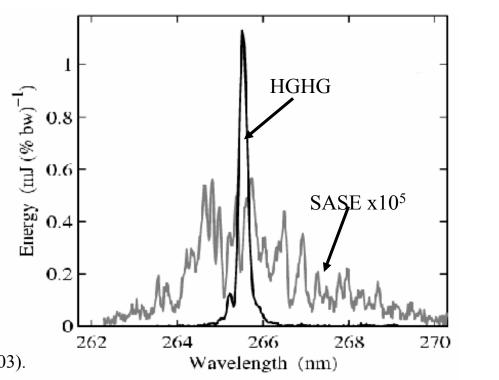
3rd Gen: 10²²


SREEL Undulator System at the Advanced Photon Source

APS Demonstration of SASE

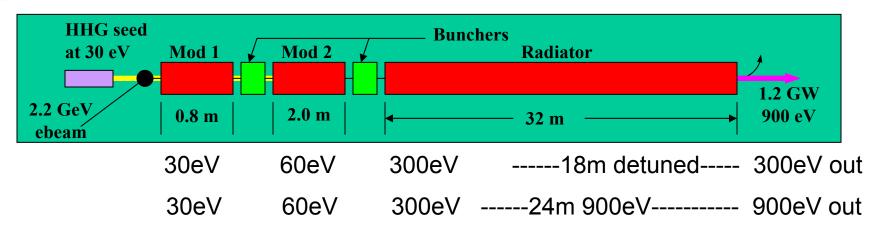


Milton S.V., et al, "Observation of Self-Amplified Spontaneous Emission and Exponential Growth at 530 nm," *Phys. Rev. Lett.* **85**, 988-991 (2000)



Brookhaven Laser Seeding Demonstration

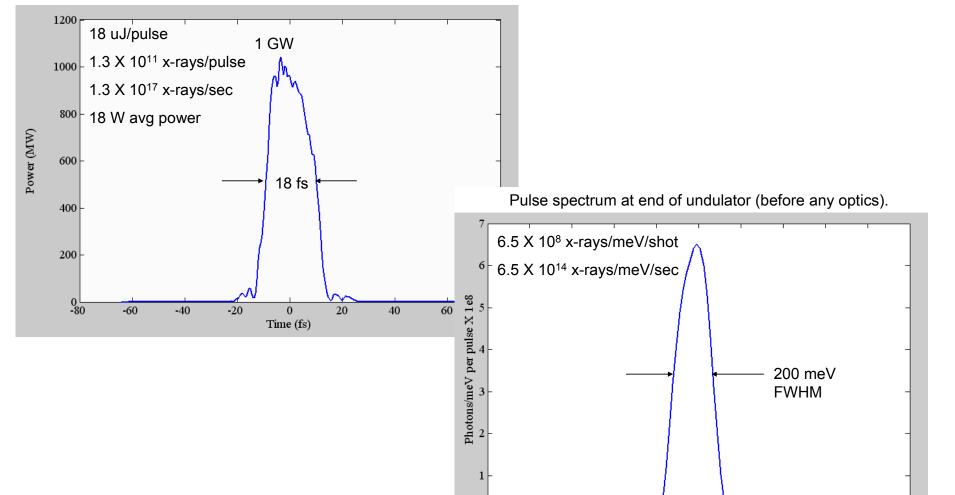
High Gain Harmonic Generation (HGHG)


- •Suppressed SASE noise
- •Amplified coherent signal
- Narrowed bandwidth
- •Shifted wavelength

L.H. Yu et al., Phys. Rev. Lett. 91, 74801 (2003).

Seeded FEL for 300-900 eV

- 1. Electron bunches with 0.2nc, and seed pulses of 300nJ and 30fs.
- The final radiator undulator is made of identical short sections allowing initial sections to be implemented as a third modulator.
- Can adjust tuning to efficiently cover entire photon energy range and different operating modes
- 4. Can retune for different electron beam performance. Not locked to one set of parameters.


FEL calculations by Bill Graves, MIT Principal Research Scientist

900 eV Output

Pulse shape at end of undulator (before any optics).

899

899.2

899.4

899.6

899.8

900

Photon Energy (eV)

900.2

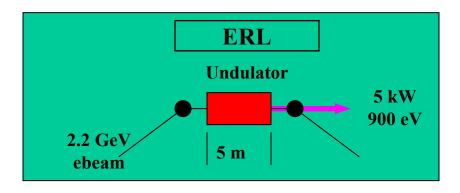
900.4

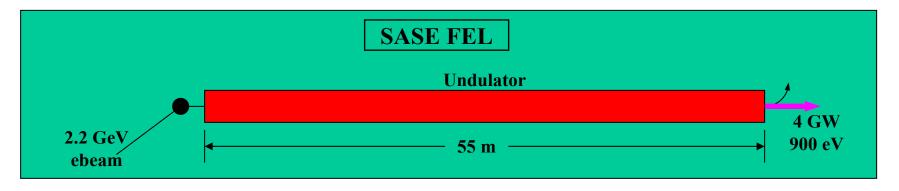
900.6

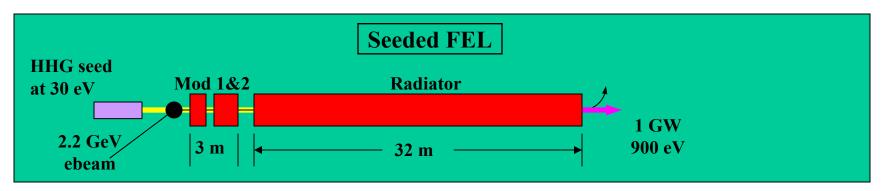
901

900.8

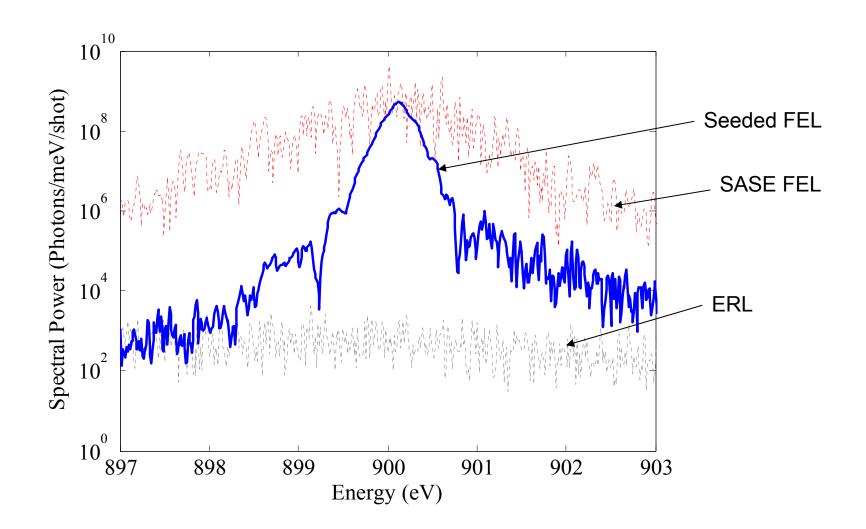
Generating High Peak Brilliance Radiation

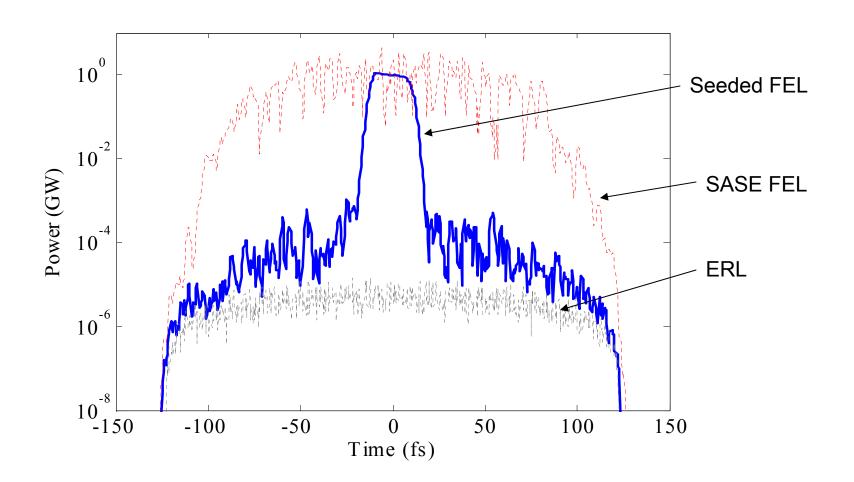

Key issues for next-generation accelerator-based light sources

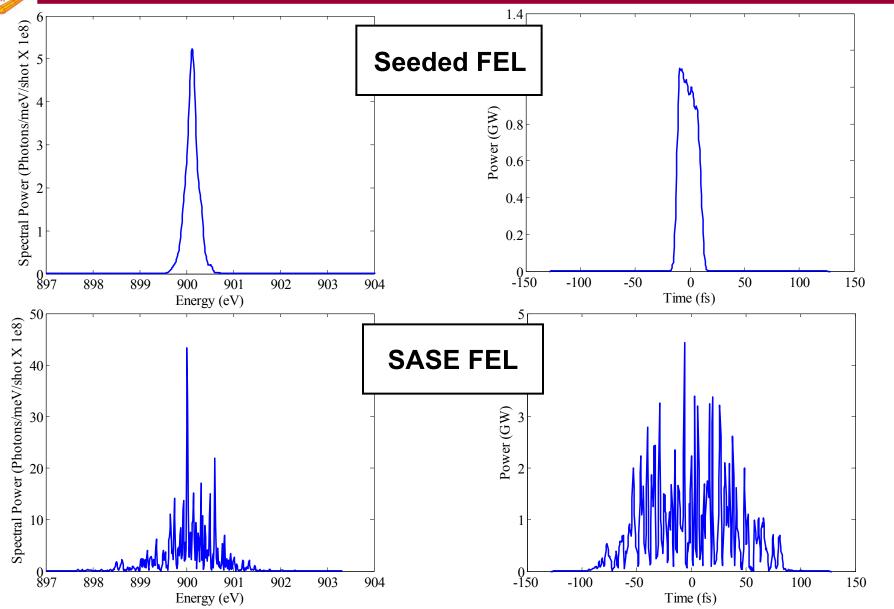

- **Preserve low e-beam emittance:** Next generation photon sources all aim to preserve the low-emittance quality of the best electron bunches that can be produced, rather than letting the electron emittance relax to a poorer equilibrium value as the beam circulates in a storage ring.
- Exploit coherent emission: The charge per electron bunch for Seeded FELs, SASE FELs and ERLs will be essentially the same—about n=10⁹ electrons. If radiation is emitted coherently by the electron bunch then the emitted <u>flux</u> is ideally proportional to n². The Seeded FEL takes the biggest advantage of this enormous gain. The ERL process is completely incoherent synchrotron emission proportional to n.
- **Produce only the beam that will be utilized:** Virtually all experiments driving the science for next generation facilities require narrow bandwidth, or short pulses. Furthermore the peak power is already high, so there is a strong premium on producing only radiation of bandwidth and pulse length that is useful in order to minimize the burden on optics. Only the transform-limited pulse of the Seeded FEL achieves this photon economy.



Comparing Sources of 900 eV Photons




Photon Output: Frequency Domain

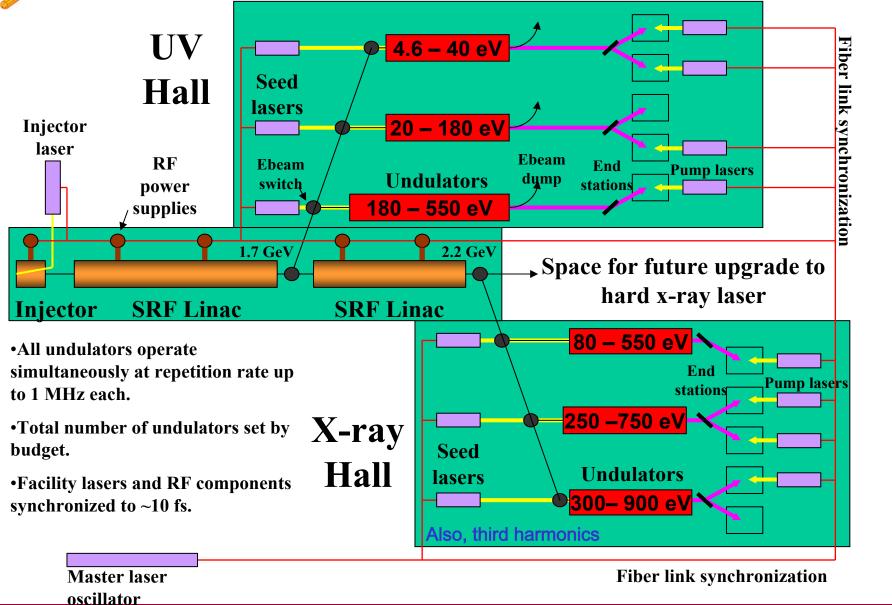

Photon Output: Time Domain

SRC Home of Aladdin

Comparing SASE and Seeded FELS

X-ray Sources Compared

Source Parameters	Seeded FEL*	SASE FEL*	ERL*	NSLS II [†]
Photon energy (eV)	900	900	900	900
Pulse output energy (mJ)	23	140	0.0009	0.003
Peak power (GW)	1.1	1.1	5.6e-6	1.1e-7
Photons per pulse	1.6e11	1.0e12	6.2e6	2.1e7
RMS x,y source size (mm)	24	29	9.3	85, 10
RMS x,y diffraction angle (m rad)	5	5	53.4	21, 12
M**2	1.07	1.2	4.6	8.5
RMS pulse length (fs)	7	39	55	11000
RMS bandwidth (meV)	140	596	3710	2500
Coherence time (fs)	15	3.5	0.6	0.8
Peak brightness (p/s/0.1%/ mm ² mr ²)	4.5e31	0.8e31	4.5e23	8.8e22
Avg brightness (p/s/0.1%/ mm ² mr ²)	1.8e24 1 mA	2.0e24 1 mA	1.5e19 100mA	8.0e20 500 mA


^{*}Results of numerical simulations with code GINGER.

[†]From CD-0 design report

WiFEL Conceptual Design

Symposium

Plans for the Wisconsin Free Electron Laser Facility: Preliminary Design Performance and Scientific Opportunities

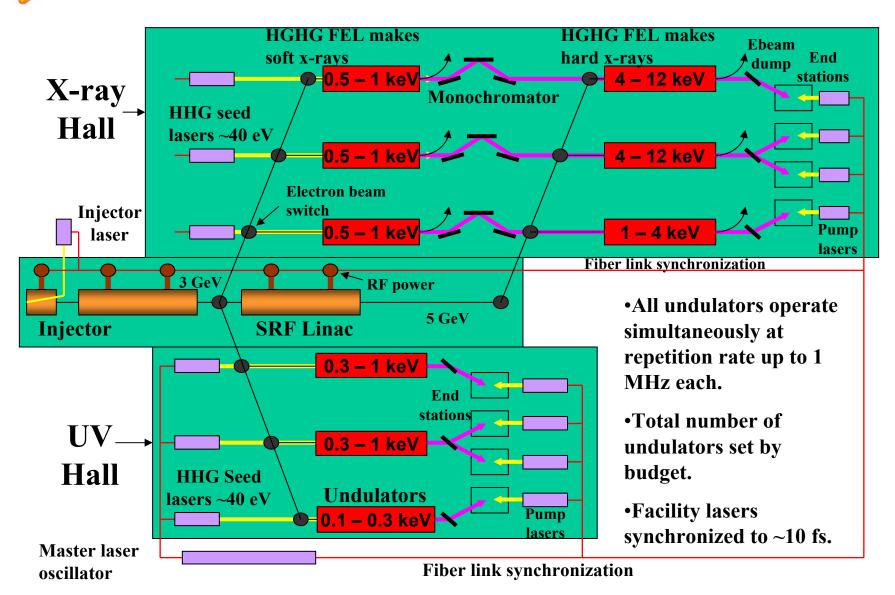
Engineering Hall (Room 1610), UW-Madison Campus
October 11, 2007

8:00 - 8:30	Continental Breakfast (Engineering Lobby)			
8:30 - 8:45	Welcome Joe Bisognano, Synchrotron Radiation Center			
Session Chair: Joe Bisognano, Synchrotron Radiation Center				
8:45 - 9:30				
8:45 - 9:50	Free Electron Lasers: a European Perspective			
	Wolfgang Eberhardt, BESSY G.m.b.H, Berlin, Germany			
9:30 - 10:00	Introduction to the Wisconsin FEL Project			
	David Moncton, MIT			
10:00 -10:30	Break			
10:30 - 11:15	Wisconsin FEL Performance Estimates			
	Ken Jacobs, Synchrotron Radiation Center, UW-Madison			
11:15 - 11:45	Beamline Performance			
	Ruben Reininger, Synchrotron Radiation Center, UW-Madison			
	Table Tellinger, Synemen on Talananen Conten, Cri 12aansen			
12:00 - 13:00	Lunch (Engineering Lobby)			
Session Chair: Bertold Kraessig, Argonne National Laboratory				
13:00 - 13:30	Atomic and Molecular Physics			
10.00	Ralf Wehlitz, Synchrotron Radiation Center			
13:30 - 14:00	Nanotechnology			
13.30 - 14.00	Franco Cerrina. UW-Madison			
14.00 14.20	,			
14:00 – 14:30	Biological Sciences: Imaging			
14.00 15.00	Robert Austin, Princeton University			
14:30 – 15:00	Biological Sciences: Spectroscopy			
	Steve Cramer, UC Davis			
15:00 – 15:30	Break			
	TT. I TITTLE I			
	z Himpsel, UW-Madison			
15:30 – 16:00	Condensed Matter: Coherent Imaging			
	Ian McNulty, Argonne National Laboratory			
16:00 – 16:30	Condensed Matter: Resonant Inelastic Scattering			
	Peter Abbamonte, U of Illinois at Urbana-Champaign			
16:30 - 17:00	Condensed Matter: Photoemission Spectroscopy			
	Tai-Chang Chiang, U of Illinois at Urbana-Champaign			
17:00 - 17:30	Femtochemistry			
	Lin Chen, Argonne National Laboratory			
	Zar Casa, III gorine I ranoral Zaror alory			

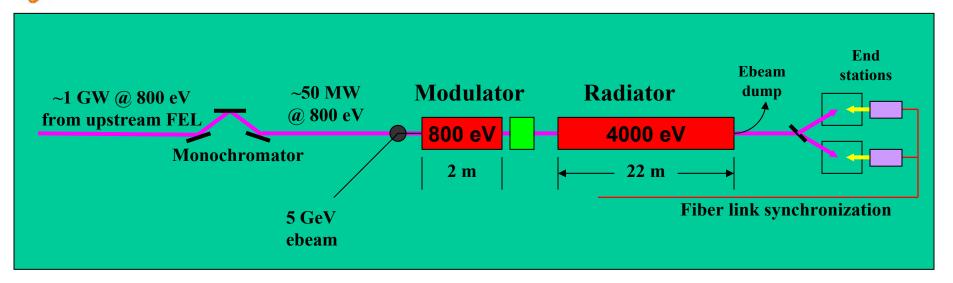
SRC Home of Aladdin

Conclusions

The facility we envision will:

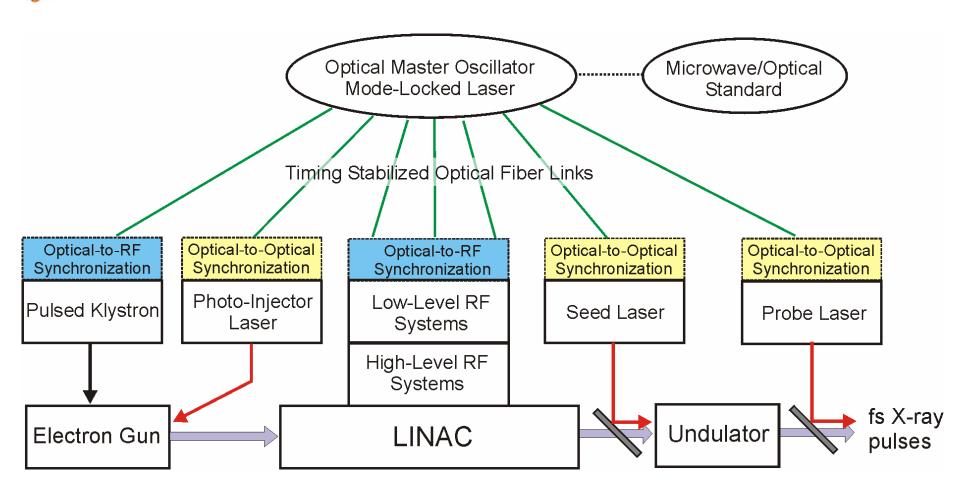

- Support tens of beamlines
- Produce fully coherent light up to 900 eV
- With $\sim 0.1\%$ of the power in the third harmonic
- Tunable in energy and polarization
- Enabling resolution to a meV or less
- With pulses of 20 fs and ultimately less
- With extremely high flux when needed
- Which will also enable non-linear studies
- With timing systems synchronized to 10fs
- To enable two color pump-probe,
- Maybe even two FEL colors

What could be better—besides hard x-rays? —and that would be possible as an upgrade


A Seeded Hard X-ray FEL User Facility

Harmonic Hard X-ray Generation

- 1. Output from soft x-ray FEL is monochromatized and used to seed final section.
- 2. Modulator undulator is tuned to 800 eV and fresh 5 GeV electron bunch is introduced.
- 3. Up to 5 GW peak power is produced at 4 keV fundamental of final radiator. Average power is 150 W, or 2e17 photons/sec.
- 4. Up to 100 MW coherent peak power is produced at 12 keV harmonic. Average power is 3 W, or 1e15 photons/sec.


Key Issues for NSF Role

- The advantages of NSF/University stewardship
 - NSF is responsive to the scientific community
 - FEL R&D was curtailed at BNL and ANL because it was not consistent with the DOE mission
 - US leadership in this area circa 2000 has now been lost to Europe
 - NSF/University stewardship can maximize the educational benefit
 - Broad interest in science and engineering user program opportunities
 - The underlying accelerator and laser technologies also offer many educational opportunities
 - Leverage the university intellectual breadth/depth in constructing the facility and in hosting the external user community
 - At the best universities, it is considerably greater than a national lab.
 - Leverage unique technology available at certain universities
 - Such as ultra-fast laser technology at MIT or Nanofab at UW
 - Some programs are at a higher level than comparable national lab programs.

Femtosecond Synchronization

Note: Laser systems development in the group of MIT professor Franz Kaertner is the world leading effort integrating laser and linac technology

J. Kim et al., FEL 2004.

